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This paper is concernedwith homogenization of a corrugated-core sandwich panel, which is a candidate structure

for integrated thermal protection systems for space vehicles. The focus is on determining the local stresses in an

integrated thermal protection system panel subjected to mechanical and thermal loads. A micromechanical method

is developed to homogenize the sandwich panel as an equivalent orthotropic plate.Mechanical and thermal loads are

applied to the equivalent thick plate, and the resulting plate deformations were obtained through a shear deformable

plate theory. The two-dimensional plate deformations are used to obtain local integrated thermal protection system

stresses through reverse homogenization. In addition, simple beam models are used to obtain local facesheet

deformations and stress. The local stresses and deflections computed using the analytical method were compared

with those from a detailed finite element analysis of the integrated thermal protection system. For the integrated

thermal protection system examples considered in this paper, the maximum error in stresses and deflections is less

than 5%. This was true for both mechanical and thermal loads acting on the integrated thermal protection system.

Nomenclature

a = integrated thermal protection system length
b = integrated thermal protection system width
d = height of sandwich panel (centerline to centerline)
�D = inverse bending stiffness matrix
D� = reduced bending stiffness matrix
E = Young’s modulus
EI = equivalent flexural rigidity
G = transverse shear modulus
Pz = pressure load acting on the two-dimensional

orthotropic panel
fqg = displacement vector
Qij = transformed lamina stiffness matrix
Qx, Qy = shear force on unit cell
�Qij = transformed lamina stiffness matrix in the

nonprincipal coordinate system
s = web length
tBF = bottom facesheet thickness
tTF = top facesheet thickness
tw = web thickness
�TD��e� = deformation transformation matrix of the ith

component of the corrugated core
U = unit-cell strain energy
v = deflection of beam
w = integrated thermal protection system panel deflection

�yf = local y axis of facesheet
�yw = local y axis of web
�zf = local z axis of facesheet
�zw = local z axis of web
"o = midplane strain
� = angle of web inclination
� = curvature
� = roots of auxiliary equation
� = Poisson’s ratio
 x,  y = rotations of the plate’s cross section
2p = unit-cell length

I. Introduction

T HE primary function of a thermal protection system (TPS) is to
protect the space vehicle from extreme aerodynamic heating

and to maintain the underlying structure within acceptable temper-
ature and mechanical constraints [1]. The current state-of-the-art
reusable TPS covers the outer surface of a vehicle with a layer that
does not carry significant loads but prevents the underlying load-
bearing structure from exceeding acceptable temperature limits.

An intriguing alternative is to embed the relatively fragile
insulation in a structural load-bearing sandwich panel. A robust,
structural facesheet would then form the outer surface of the vehicle,
thereby potentially removing some vehicle operational constraints,
e.g., flight through rain, and reducing required maintenance. By
using the insulation thickness as a structural sandwich core, there is a
potential to increase structural bending stiffness, save weight, and
reduce overall thickness of the vehicle wall. There are significant
challenges in designing a structure to function simultaneously as an
efficient aerospace load-bearing structure and a thermal insulator.
The challenges include understanding the key thermal-structural
loads and requirements that drive the design, identifying materials
that best perform in a thermal environment, and accommodating
thermal expansion mismatches, thermal stresses, and effects of
temperature-dependent properties inherent in these systems. Candi-
date concepts comprising metallic foams and innovative core
materials, such as corrugated and truss cores, have been investigated.

The corrugated-core sandwich panel is composed of several unit
cells placed adjacent to each other. The empty space in the corrugated
corewill be filled with a non-load-bearing insulation such as Safill®.
The TPS concept combines all three passive TPS concepts: heat sink,
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hot structure, and insulated structure [2]. The sandwich structurewill
replace the structural skin and the insulation in the current thermal
structures. Since the sandwich construction is stiffer than single skin
construction, the number of frames and stringers will be significantly
reduced. Furthermore, the insulation is protected from foreign object
impact and requires less or no maintenance such as waterproofing.
The integral TPS/structure [integrated thermal protection system
(ITPS)] design (Fig. 1) can significantly reduce the overall weight of
the vehicle as the TPS/structure performs the load-bearing function.
The ITPS is expected to bemultifunctional (offer insulation aswell as
load-bearing capability). Advantages of an ITPS concept have been
identified by Martinez et al. [3].

The finite element method (FEM) is commonly used to perform
three-dimensional (3-D) stress analysis of the ITPS structure. How-
ever, a full-scale 3-D finite element (FE) stress analysis will be
expensive and time-consuming for a quick preliminary sizing anal-
ysis of an ITPS. The same is true with design optimization, which
may involve 1000s of analyses. An alternative is tomodel the ITPS as
an equivalent orthotropic plate and perform a 2-D plate analysis to
obtain the displacement and stress fields.

This paper is the third in the sequel of paperswritten by the authors
on the subject of homogenization of the ITPS. The procedures are
depicted in Fig. 1a. The ITPS, which consists of repeating cells, is
homogenized as an equivalent orthotropic plate, and the ABD
matrices (stiffness matrices) of the equivalent plate are calculated
using analytical methods. In the first paper [3], the authors described
the homogenization procedures and verified the accuracy of the
extensional �A�, bending �D�, and shear �C� stiffness matrices by
comparing with those calculated using FEMs. In the second paper
[4], procedures for calculating equivalent thermal forces and
moments for a given through-the-thickness temperature distribution
were developed without considering shear deformations. In the

current paper, the equivalent orthotropic plate is analyzed using a
first-order shear deformable theory in which the transverse shear
stresses are not neglected. Both pressure loads and thermal loads are
considered. The plate analysis results include midplane strains f"0g
and curvatures f�g at a given �x; y�. Then, a reverse homogenization
procedure is used to calculate the detailed stress field from the f"0g
and f�g obtained from the plate analysis. The stresses are compared
with those obtained from a detailed 3-D analysis of the ITPS.

It is worth pointing out that, in the present work, analytical
methods are used for every step of the procedures described above.
Analytical methods are much faster than FE analysis and are suitable
when 1000s of analyses have to be performed in the design opti-
mization of the ITPS panel. Analytical methods will be extremely
useful if one decides to use stochastic optimization rather than a
safety-factor-based design approach.

Only a limited amount of work in micromechanical unit-cell
analyses of sandwich structures is available in the literature [5–12]; it
has been summarized in our previous works [3,4] and will not be
repeated here. The aforementioned researchers used the force-
distortion relationship, which involvedmechanics of materials equa-
tions to determine average unit-cell stresses. In the current paper, we
improve on that by use of a first-order shear deformable plate theory
(FSDT) [13] for the 2-D equivalent ITPS plate analysis, reverse
homogenization, and simple beam models for the local ITPS stress
analysis. The higher-order theory that includes the effects of
transverse shear deformation is suitable for an ITPS because of the
significant transverse shear loads that are carried by the corrugated
core. Although such stresses can be postcomputed through 3-D
elasticity equilibrium equations, they are not always accurate. The
classical laminate plate theory (CLPT) [14] underpredicts deflections
and overpredicts buckling loads with plate length-to-thickness ratios
less than 20. For this reason alone, it was necessary to use the

Fig. 1 ITPS: a) corrugated-core sandwich panels for use as an ITPS and b) flowchart depicting procedures in homogenization of the ITPS panel and

reverse homogenization to obtain the detailed displacements and stresses (TFS denotes top facesheet; BFS denotes bottom facesheet).
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first-order theory in the ITPS analysis of relatively thick plates. The
primary objective and importance of using the FSDTwhen analyzing
the ITPS as a two-dimensional (2-D) homogenized platewas to bring
out the effect of shear deformation on deflections and stresses.

The paper’s objective is to derive a satisfactory approximate plate
theory of an ITPS panel homogenized as a 2-D plate using the FSDT.
The solution of the plate equations gives all necessary information for
calculating stresses at any point of the thick plate. Local ITPS stresses
of the facesheets and webs are derived by using the 2-D plate
deflections w, rotations,  x,  y, reverse homogenization, and a
transformation matrix. Reverse homogenization only captures the
midplane strains and curvatures of the unit cell at the origin (seeFig. 2),
which resulted in a uniform stress field in the facesheets and webs.
Additional local analysis had to be done through one-dimensional (1-
D) beammodels to capture the nonuniform stressfield of the facesheet
and webs when subjected to mechanical and thermal loads. The ITPS
panel is subjected to a uniform pressure load and thermal edge
moments, and the resulting plate deflections and local ITPS stresses
are compared with a detailed FE analysis of the ITPS.

II. Analysis

Consider a simplified geometry of an ITPS unit cell, shown in
Fig. 2. The z axis is in the thickness direction of the ITPS panel. The
stiffer longitudinal direction is parallel to the x axis, and the y axis is
in the transverse direction. The unit cell consists of two inclinedwebs
and two thin facesheets. The unit cell is symmetric with respect to
the yz plane. The upper faceplate thickness tTF can be different from
the lower faceplate thickness tTB, as well as the web thickness tw.
The unit cell can be identified by six geometric parameters
�p; d; tTF; tBF; tw; �� (Fig. 2).

The equivalent stiffness of the orthotropic plate is obtained by
comparing the behavior of a unit cell of the corrugated-core sandwich
panel with that of an element of the idealized homogeneous
orthotropic plate (Fig. 3).

The in-plane extensional and shear response and out-of-plane
(transverse) shear response of the orthotropic panel are governed by
the following constitutive relations:
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3
5� �A� �03� �03�

�03� �C� �03�
�03� �03� �D�

2
4

3
5("o�

�

)
or fFg � �K�fqg (1)

In Eq. (1), "o and � are the in-plane and transverse shear strains,
and � are the bending and twisting curvatures; fNg, fQg, and fMg, are

the in-plane forces, transverse shear forces, and bending and twisting
moments; and �A�, �C�, and �D� are the extensional, transverse shear,
and bending stiffness. The equivalent orthotropic plate is assumed to
be symmetric about its midplane, leading to a negligible extension-
bending coupling matrix �B�. The case of unsymmetric plates will be
dealt with using approximate methods as discussed in this paper. The
detailed homogenization procedures for determining the �A�, �B�, �C�,
and �D� matrices for the corrugated-core sandwich panel were
derived inMartinez et al. [15]. In the following sections, we describe
the procedures for determining the response of the ITPS to pressure
and thermal loads.

A. Uniform Pressure Loading

A simply supported orthotropic sandwich panel of width b (y
direction) and length a (x direction) was considered for a 2-D plate
analysis (Fig. 3). The simply supported boundary conditions are
described as

w�0; y� � 0; w�a; y� � 0 Mx�0; y� � 0

Mx�a; y� � 0 w�x; 0� � 0; w�x; b� � 0

My�x; 0� � 0; My�x; b� � 0 (2)

The panel is exposed to a uniform pressure load that can be
represented by the double Fourier sine series, as shown in Eq. (3):

PZ�x; y� � �
X1
m�1

X1
n�1

Pmn sin

�
m�x

a

�
sin

�
n�y

b

�
(3)

In the above equation, Pmn � 16Po=�
2mn for uniform pressure

loads [13], wherePo is the intensity of the uniformly distributed load.
The ITPS panel is also assumed to have the following deformations
that satisfy the simply supported boundary conditions:

w�x; y� �
X1
m�1

X1
n�1

Amn sin
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a
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�
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b

�
(4a)
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�
m�x

a
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�
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�
(4b)

 y�x; y� �
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m�1

X1
n�1

Cmn sin

�
m�x

a

�
cos

�
n�y

b

�
(4c)

In the above equations, w�x; y� is the out-of-plane displacement,
and  x�x; y� and  y�x; y� are the plate rotations.

The unknown constants Amn, Bmn, and Cmn were obtained by
substituting the constitutive relations in the form of the assumed
deformations from Appendix A [Eqs. (A2) and (A3)] into the
differential equation of equilibrium [Eq. (A1)]. This results in a
system of three linear equations for the unknown coefficients as
shown:

Fig. 2 Dimensions of the unit cell.

Fig. 3 Equivalent orthotropic thick plate for the unit cell of the

corrugated-core sandwich panel.
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Fig. 4 Half of the top face under the action of a uniform pressure

loading.
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After solving for the unknown constants, the deflections were
obtained at a given �x; y� coordinate on the 2-D orthotropic sandwich
panel using Eq. (4). The results in the above series converged for
m� n� 23, resulting in a total of 529 terms in Eq. (4) [10]. It should
be mentioned that the shear correction factor k in Eq. (5) was
assumed to be unity, as C44 and C55 were directly predicted using
micromechanics [3].

B. Top Facesheet Local Deflection

The top facesheet was directly exposed to a uniform pressure
loading. The uniform pressure loading that acted on the thin
facesheet resulted in local deflections that were not captured by the
2-D FSDT. The FSDT analysis resulted in midplane strains and
curvatures at the center of the unit cell. The facesheet local defor-
mation vector due to the pressure requires additional analysis. A 1-D
beam problemwas used to calculate the additional local deformation
of the facesheet under uniform pressure load. Because of symmetry,
only half of the top facesheet was analyzed (Fig. 4).

A matrix structural analysis method (FE) was used to determine
the deflection of the top facesheet. Half of the top facesheet was
modeled using two beam elements. Displacement and rotation
boundary conditions were imposed on the two ends of the facesheet.
A torsional spring element with a rotation boundary condition was
used at themiddle node to capture the resistance to rotation offered by
the web connected to the facesheet. The elements are indicated by
roman numerals in Fig. 4. Because of symmetry, �A and �c were zero.
Because of the displacement constraint of the web and the facesheet,
the deflection at junction Bwas set to zero, i.e., vB � 0. The clamped
boundary condition at node D resulted in �D being zero. The
consistent, or work, equivalent loads on each element due to the
uniform pressure loading were computed using the beam element
shape functions [16] as shown below:
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In Eq. (6), i and j correspond to the left and right nodes of the beam
and torsional elements, and L corresponds to the length of the beam
element. The element stiffness matrix for the beam and torsional
spring elements were assembled accordingly to obtain the global
stiffness matrix and global force vector:
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In Eq. (7),L3 was the length of theweb. Equation (7) was solved to
obtain the nodal displacements, which were substituted back in the
interpolation functions to obtain the transverse deflection of the
facesheet:

vI� �yf� �
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3�y2f
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2�y3f
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�
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�
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L2
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The 1-D deflections fromEqs. (8) and (9) were superimposedwith
the plate deflection from Eq. (4a).

C. Stresses due to Pressure Loading

1. Stress Because of Midplane Strain and Curvature

The FSDTanalysis of the equivalent plate yields midplane strains,
curvatures, and transverse shear strains at given �x; y� of the
equivalent plate. These deformations are called the macro-
deformations [3], and they are the deformations in the equivalent
orthotropic plate. To calculate the stresses in the ITPS, we apply the
aforementionedmacrodeformations to a unit cell situated at the same
point. Then, using the transformation matrices defined by Martinez
et al. [3], the (actual) deformations in the facesheets and thewebwere
calculated. From the constitutive relations of the facesheet and web
materials (layup in the cases of laminates), the stresses are calculated.
A flowchart (Fig. 5) outlines the stress calculation procedure. In the
flowchart, the x and y locations correspond to the ITPS 2-D
equivalent plate, and �y and �z correspond the local location on either
the face or web; Fig. 6a. If e in Fig. 5 was equal to 3 or 4 (left or right
web), then the micro-mid-plane strains and curvatures were a

Fig. 5 Local stress flowchart for an ITPS as a 2-D plate with transverse

shear force effects consideration.
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function of �yw, whichwould result inweb stresses as a function of �yw.
There will be additional stresses in the top facesheet that result from
the local effects of the pressure loading. These local stresses are
determined from the local deflections derived in Eqs. (8) and (9) and
added to that resulting from the equivalent plate analysis in Eq. (4).
The stresses calculated from Eqs. (8) and (9) neglect a shear
deformation term because the facesheets and webs are thin when
considered by themselves and compared with the unit-cell
dimensions.

2. Stress due to Transverse Shear Strains

In this section, we describe the procedures to calculate the stresses
in the facesheets and web due to transverse shear forceQy acting on
the equivalent orthotropic plate. Figure 6 illustrates the ITPS half-
unit cell under the action of various forces that resulted from a
transverse shearing force Qy. The unknown forces P, R, and F for
unit Qy were determined from Castigliano’s second theorem [16].
Then, using the procedure described by Martinez et al. [15], the
bending moments at a cross section of the facesheets or webs were
determined (Appendix B). From the moment equations
(Appendix B), the resulting curvature in either of the facesheets or
webs was determined:

�
�e�Qy
�y � �y; x; y� �

�
� �D�e�12
�D�e�11
� �D�e�22

�
Mij� �y�Qy�x; y� (10)

The flowchart shown in Fig. 5 takes into account the moments
from Eq. (A1) and the transverse shear force from Eq. (A3) for local
stress determination. The superscript e in Eq. (10) refers to a
component assignment of the ITPS. An e of 1, 2, 3, and 4 refers to the
top facesheet, bottom facesheet, left web, and right web. It should be
mentioned that, in applying Castigliano’s theorem, we accounted
only for the strain energy due to bending in various segments of the
cross sections. The energy due to in-plane forces and transverse shear
force was assumed to be negligible compared with the bending
energy since the thickness of the facesheet and webs are small when
compared with its length.

3. Local Stress due to the Uniform Pressure Loading:

One-Dimensional Analysis

The calculation of local stresses in the top facesheet due to
pressure loading is a continuation of the analysis described above
that determines the local transverse displacements [see Eqs. (8) and

(9)]. The free body diagram of the top facesheet under the action of a
uniform pressure loading is shown in Fig. 7.

In Fig. 8, the moments at points A and B were determined by
multiplying the element stiffnessmatrixwith the corresponding node
displacement vector; see Appendix C.

The stresses at any local point of the top facesheet were determined
by multiplying the moment vector with the inverse of the bending
stiffness matrix and the lamina stiffness matrix of the facesheet as
shown below. A superscript value of 1 refers to the top facesheet:
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5
�1 D

�1�
12

D
�1�
22

Mij
�y

Mij
�y

0

2
64

3
75

(11)

D. Unsymmetric Integrated Thermal Protection System

Panel Configuration

The methods described so far are for an ITPS with symmetric
facesheet configurations with respect to the unit-cell y axis, i.e., �B�
matrix is zero. However, certain designs may call for different
materials or thicknesses for the top and bottom facesheets that make
it perform at its optimum for mechanical and thermal applications.
Ceramic matrix composites and high-temperature metals are
possible choices for the top facesheet due to their high service
temperatures. Aluminum alloys and composite materials are of
preference for the bottom facesheet due to their high specific heats
and mass-efficient structural properties. An ITPS with different
materials for the top and bottom facesheets results in a stiffness
matrixwith a nonzero coupling stiffnessmatrix, �B� ≠ 0. This type of
ITPS configuration will be referred to as an unsymmetric ITPS. The
presence of the bending-extensional coupling stiffness matrix causes
considerable difficulty in obtaining solutions to a plate problemusing
either the FSDT or CLPT method. As an alternative, the reduced
stiffness matrix approach [14], wherein �B� is assumed to be equal to
zero and �D� is modified, could be used. Then, the techniques
described above for analysis of orthotropic plates can be directly
used. The reduced stiffness matrix [Eq. (12)] was used in the plate
solution of an orthotropic platewith a uniform pressure load. The use
of the reduced stiffness matrix tends to reduce the effective stiffness

Fig. 6 Unit cells: a) ITPS unit cell under the action of transverse shear force, and b) half-ITPS unit cell.
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Fig. 7 Free body diagram of section BC (see Fig. 4) of the top facesheet.
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Fig. 8 Free body diagram of section AB (see Fig. 4) of the top facesheet.

MARTINEZ ETAL. 391



of the plate, which results in increased bending deflections while
buckling loads are decreased when compared with equivalent
symmetric orthotropic plates. The corresponding error in the out-of-
plane plate displacement and local stresses was investigated and
compared with the FE results. The reduced bending stiffness matrix
�D�� is given by [14]:

�D�� � �D� � �B��A��1�B� (12)

E. Thermal Stress Moment Resultants

The ITPS panel is exposed to extreme reentry temperatures that
result in various temperature distributions through the ITPS
thickness as a function of reentry time (transient heat transfer) [17].
The temperature distribution causes the ITPS to deform due to the
resulting thermal force and moments that were determined by
Martinez et. al [18]. An analytical solution was derived to predict the
thermal deflection of the ITPS panel when subjected to a through-
the-thickness temperature distribution. A 2-D plate analysis was
needed to determine the response of the ITPS when it was subjected
to thermal moments. Consider a rectangular plate simply supported
along the nonloaded edges and bent by moments distributed along
the edges x� �0; a� (Fig. 9).

The distributed moment in Fig. 9 is equal to the previously
calculated thermal moment fromMartinez et al. [18]. Typical ranges
of L=h for the ITPS will be from 10 to 20, which result in
nonnegligible shear effects. AnFSDTapproachwas implemented for
the deflection solution of the ITPS plate. The boundary conditions for
the thermal plate problem are as follows:

w� 0;  x � 0 y� �0; b� w� 0;  y � 0

x� �0; a� MT
x ��D11 x;x x� �0; a� (13)

The deflections and rotations are assumed such that they satisfy all
displacement boundary conditions along the edges y� 0 and y� b:

w�x; y� �
XN
n�1

An�x� sin
n�y

b
 x�x; y� �

XN
n�1

Bn�x� sin
n�y

b

 y�x; y� �
XN
n�1

Cn�x� cos
n�y

b
(14)

The deflection and curvature solutions of the plate are taken in the
form of a series where An�x�, Bn�x�, and Cn�x� are all unknown
functions of x only. It was assumed that the two unloaded edges are
simply supported; hence, each term of the series satisfies the
boundary conditions w� 0 and  x � 0 on these two sides. It
remains to determine An�x�, Bn�x�, and Cn�x� in such a form to
satisfy the boundary conditions on the sides x� 0 and x� a, and the
equation of equilibrium [Eq. (A1)]. Taking the assumed deflection
and rotations in the form of a series and substituting them into the
equilibrium equations results in three ordinary differential equations
[Eq. (D1)].

We assume solutions to be of the form of an exponential series
function; see Eq. (D2). Substituting the assumed solution from
Eq. (D2) in the differential equations [Eq. (D1)] yields a set of
homogeneous linear equations for the unknown coefficients	,
, and
� as shown below:

det
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2�D66�
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2
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9=
;�

8<
:
0

0

0

9=
; (15)

The lambdas were solved by setting the determinant of the
coefficient matrix to zero. The solution to Eq. (15) yielded six
solutions ��; –�6�. The six roots yielded six terms in Eq. (D2), which
resulted in three equations with six unknowns per equation
[Eqs. (D3–D5)]. Eighteen unknown constants resulted from the
equations in Appendix D, which were not possible to solvewith only
six boundary conditions. However, a relation was made between all
18 constants (see Appendix D), which reduced the number of
independent constants from 18 to 6. A unique solution to each
unknown constant was now available because of the equal number of
unknown constants and boundary conditions.

The moment distribution along the edges of the plate was
represented by the Fourier sine series as

Mx �
XN
n�1

Mn sin
n�x

a
(16)

For the case of a uniform distribution of the bending moments, the
termMn was represented asMn � 4MT

x =n�. A system of six linear
equations was obtained by substituting Eq. (D2) into Eq. (14) and
Eq. (14) into Eq. (13):
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By solving the set of six linear equations, the assumed deflection
equations [Eq. (15)]were solved. Equations (D6) and (D7)were used
to obtain the solutions to the plate rotation in the x and y directions.
The same procedure was applicable for uniformly distributed
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Fig. 9 ITPS orthotropic plate subjected to uniformly distributed

thermal end moments.
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bendingmoments along the y axis. In the case of simultaneous action
of couples along the entire boundary of the ITPS plate, the deflections
and moments can be obtained by suitable superposition of the results
obtained from the detailed discussion.

III. Results

A. Integrated Thermal Protection System Out-of-Plane

Displacement: Pressure Load

For verification of the accuracy in prediction of the deflection and
stress results of an ITPS sandwich panel under the action of a uniform
pressure loading, an ITPS panel with the following dimensions was
analyzed:p� 50 mm,d� 100 mm, tTF � 1:5 mm, tBF � 1:5 mm,
tw � 1:5 mm, �� 75
,a� 1 m, andb� 1 m. An Inconel 617 alloy
was used as an example to verify the analytical models for deter-
mining local stresses in the ITPS sandwich panel (E� 202 GPa,
�� 0:287). A 10-unit-cell ITPS sandwich panel wasmodeled for the
analysis (Fig. 10a). Because of symmetry of the ITPS panel, only a
quarter of the plate was modeled. A 3-D FE analysis was conducted
on the ITPS plate using the commercial ABAQUSTM version 6.4 FE
program. Eight node shell elements were used to model the
facesheets and webs of the unit cell. The shell elements have the
capability to include multiple layers of different material properties
and thicknesses that are needed to model a laminate. Three inte-
gration points were used through the thickness of the shell elements.
The FEM model consisted of 15,048 nodes and 5100 elements
(Fig. 10b). The ITPS panel was subjected to a uniform pressure
loading of 68,947 Pa (10 psi), and symmetric boundary conditions
were imposed at the edges of the ITPS plate. The bottom facesheet
had an out-of-plane displacement constraint w�0; y��
w�x; 0� � 0, while the top facesheet only had a rotation constraint
in all three directions along x� 0 and y� 0 (Fig. 11). The FEmodel
was constrained with the appropriate boundary conditions from
Eq. (2) and appropriate symmetric boundary conditions. The y-
symmetric boundary conditions are

v�x; b=2� � Rx�x; b=2� � Rz�x; b=2� � 0

and the x-symmetric boundary conditions are

u�a=2; 0� � Rx�a=2; 0� � Rz�a=2; 0� � 0

TheFEMout-of-plane displacements of the ITPS panel at x� a=2
were extracted and compared with the results obtained from
Eqs. (4a), (8), and (9). The homogenized ITPS 2-D plate can

potentially have an unlimited number of fictitious unit cells
depending on what x and y points are chosen. Since the FEM ITPS
model contained 10 unit cells, for comparison, the homogenized
ITPS 2-D plate was divided into a 10 	 10 grid. The accuracy was
verified through FE results and a convergence study. Each inter-
section of the grid lines corresponded to an analytical ITPS unit cell
that corresponded to the center location of the FEM unit cell. The
curvatures in the x and y directions at each analytical grid intersection
were assumed to be constant for the entire unit cell; however, the
curvatures in the x and y directions from the 3-D FEM results were
not constantwithin each unit cell. The curvatures varied through each
unit cell. This stress gradient effect could not be captured by the
analytical homogenized plate model. The FEM out-of-plane
displacement contour of the ITPS is illustrated in Fig. 12. The FEM
out-of-plane displacement results at x� a=2 were compared with

Fig. 10 FE a) model and b) mesh.

Fig. 11 FE boundary conditions for the ITPS plate.

Fig. 12 ITPS out-of-plane deformation.
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the analytical results (Fig. 13). As seen in Fig. 13, the analytical out-
of-plane displacement results are within a 1–2% difference from the
FEM results. There was greater percentage difference near the
boundary of the ITPS because the boundary conditions created
localized effects that were not captured by the FSDTmethod and the
1-D beam analysis. At the center of the ITPS plate, the structure acted
more like the homogenized 2-D plate because it was farther away
from the boundary. The superposition of the displacement results
obtained from the FSDTmethod and the 1-D beam analysis resulted
in a less than 5% difference and an accurate representation of the top
facesheet deflection response when subjected to a uniform pressure
load. The bottom facesheet FE displacement results agreed well with
the displacement results obtained from the FSDT method. The
bottom facesheet deflection acted more like a 2-D plate because of
the absence of local effects from the uniform pressure loading.

To verify the applicability of present methods to unsymmetric
ITPS, an ITPSwith a different bottom facesheet was considered. The
bottom facesheet was assumed to be of an aluminum alloy (E�
72:519 GPa, �12 � 0:30). An ITPS panel with the same dimensions
as mentioned above was modeled and analyzed for investigation of
the error in using the reduced stiffnessmatrix in the FSDTmethod for
an unsymmetric ITPS panel. The FEM local stresses were extracted
at x� a=2 and compared with the analytical stresses that resulted
from the FSDT method by use of the reduced stiffness matrix. From
Fig. 14, it can be noted that the plate displacement results were not
affected by using the reduced stiffness matrix in the FSDT plate
analysis. The largest difference between the FEM and analytical
results was less than 5%.

B. Integrated Thermal Protection System Out-of-Plane

Displacement: Temperature Distribution

From the results obtained by Martinez [19] on the analysis of a
plate under the action of thermal edge moments, confidence was
gained with the analytical procedure for a plate solution of an
orthotropic thick plate under the action of uniformly distributed edge
moments. The next step was to apply that approach to analytically
predict the out-of-plane displacement of an ITPS under the action of
thermal moments from an applied temperature distribution. The
temperature distribution that was considered for the analysis was at
the 450 s reentry time of a space-shuttle-type vehicle, as described in
[19] (Fig. 15). The ITPS was composed of Inconel 617, and the
resulting thermal moments for Inconel 617 are calculated and
compared with the FE verification procedure discussed by Martinez
[19]. The greatest percentage difference between the analytical and
FEM comparison was less than 7% for MT

x . The thermal moment
results (Table 1) were used to determine the analytical out-of-plane
displacement of the ITPS panel. Table 1 consists of two moments.
The aforementioned thermal plate analysis with edge moments on
the x and y axes can be used through suitable superposition (see
Fig. 16).

The same ITPS panel that was modeled for the pressure load
example was used for the temperature distribution example, except
for this case, the thickness of the faces and webs was increased from
1.5mm (0.059 in.) to 2.0mm (0.07874 in.). The number of nodes and
elements remained the same, as well as the boundary conditions. The
450 s temperature distribution was included in the FEM input file,
and the out-of-plane displacement of the ITPS was extracted at
x� a=2 after analysis. There was no need to do any local out-of-
plane displacement problem for this case because the temperatures of
the top and bottom facesheetswere considered to be constant because
of the thin faces when compared with the ITPS thickness. Therefore,
the faces were only under the action of a thermal expansion.

The out-of-plane displacement FEM result of the ITPS panel
under the action of the fourth-order temperature distribution is shown
in Fig. 16 alongwith the CLPT [19] and FSDTanalytical results. The
FSDT method for predicting out-of-plane displacement for an ITPS
under the action of uniformly distributed edge moments does not
predict accurate results for this particular ITPS panel. The FSDT
method overpredicts the actual FE displacement by 50%, and the
CLPT [20] method underpredicts the actual FE displacement by
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Fig. 15 ITPS temperature distribution at 450 s reentry time.

Table 1 Thermal moments of Inconel 617 under

the 450 s reentry temperature distribution

Stiffness Mx, Nm=m My, Nm=m

Analytical 1:20E� 05 8:84E� 04
FE 1:12E� 05 9:07E� 04
% diff. 7.1 2.5
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Fig. 16 ITPS a) out-of-plane thermal displacement and b) thermal displacement contour (TFS denotes top facesheet; BFS denotes bottom facesheet).

Table 2 Boundary conditions of the ITPS panel

Top face
rotation

Top face
displacement

Bottom
face

rotation

Bottom
face

displacement

Boundary
condition 1

X X X

Boundary
condition 2

X X

Boundary
condition 3

X X
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20%. The edge boundary conditions of the top and bottom facesheets
of the FEM model were modified in hopes of obtaining a good
comparison between the FEM and analytical results. The set of
boundary conditions are listed in Table 2. An “X” represents a
constrained condition.

The ITPS out-of-plane displacement results for all different
boundary conditions are shown in Fig. 17 and compared with the
CLPT and FSDT results. As seen from Fig. 17, the boundary con-
dition does not affect the center plate out-of-plane displacement. The
different boundary conditions had an effect on the out-of-plane
displacements that were near the edge boundary. The different
boundary conditions cause different boundary effects that affect the
ITPS out-of-plane displacement that cannot be captured by the FSDT
or CLPTmethods. The change in boundary condition did not lead to
a better comparison between the FEM and analytical results.

The thermal moments that resulted from the fourth-order
temperature distribution caused the ITPS panel to bend due to
thermal stresses. Since the ITPS plate had a low L=h value, the
thermal moments acted on a short edge length of the ITPS, which
introduced other local boundary effects into the results. These local
ITPS plate effects that resulted from the thermal moments were not
fully captured by the FSDTand CLPTmethods when the plate had a
lowL=h ratio. TheL=h ratio of the ITPSwas increased to investigate
what L=h ratio of an ITPS will result in a less than a 5% prediction
error of the FEM and analytical out-of-plane thermal displacement
results. The L=h ratio in the FEM model was increased by adding
more unit cells to the ITPS plate while keeping the ITPS thickness
constant. For ITPS plates with largeL=h ratios, the thermal moments
now acted on a long edge length, and all the local ITPS boundary
effects were minimized. The ITPS panel was able to bend as a plate,
and the bending behavior was captured by the FSDT that was
outlined above. The resulting maximum out-of-plane displacement
was extracted from the FEMoutput after analysis and compared with
the maximum analytical plate displacement for various L=h ratios.
The percentage error decreased from 50% for low L=h ratios to 2%
for highL=h ratios (Fig. 18). The analytical and FEM results were in
good agreement for that particular L=h ratio, which resulted in a less
than 5% prediction error of the ITPS out-of-plane displacement from
a fourth-order temperature distribution (see Fig. 19). The FEM and
analytical stress results were plotted at x� a=2 for an ITPS panel
with an L=h� 18 (Figs. 20 and 21).

C. Integrated Thermal Protection System Local Stress

The FEM local stresses in the x and y directions were extracted
from the FEM output after analysis at x� a=2. The analytical top
facesheet stresses were computed by superimposing the stresses
results from Fig. 5 and Eq. (17). The bottom facesheet and web
stresses were computed from Fig. 5. All stress results were computed
at �zf or w ��t=2, which was the bottom surface of each component.
Similar to the out-of-plane displacement results, the percentage
difference between the FEM and analytical results was greater at the
boundary of the ITPS; see Figs. 20–22. The percentage difference
near the boundary of the ITPS was 9%. The percentage difference
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was less than 2% for stress results near the center of the ITPS plate.
The percentage difference for the web stress in the x direction was
less than 1% when compared with the FEM results. The percentage
difference for the web stresses in the y direction was less than 3% at
the center of the plate and greater than 5% near the boundary of the
ITPS panel. The analytical local stress of the right web in the �yw
direction was different than the FEM results because, near the
boundary of the ITPS, therewas a large change in curvature due to the
local boundary effect that was not captured by the analytical model.
The curvaturewas changing through the length of the unit cell while,
in the analytical model, the curvature was kept constant. The local
stress prediction gets better when the local stresses are compared at
the center of the plate. There are less boundary effects, and the
curvature can be assumed constant for a unit cell.

For investigation of the penalty of using the reduced stiffness
matrix in the FSDT method for an unsymmetric ITPS panel, an
unsymmetric panel with the same dimensions as mentioned above
wasmodeled and analyzed. The difference in this newmodelwas that
the top facesheet and webs were composed of Inconel 617, and the
bottom facesheet was composed of an aluminum alloy (E�
72:519 GPa, �12 � 0:3). The FEM local stresses were extracted at
x� a=2 and compared with the analytical stresses that resulted from
the FSDT method by use of the reduced stiffness matrix. The
comparison between the FE results and the stress results obtained
from the FSDTmethod are illustrated in Figs. 22 and 23. The results
indicated that there was a 20% difference between the analytical and
FE results in the top facesheet when using the reduced stiffness
matrix. The use of the reduced stiffness matrix in the FSDT method
did not have any effect on the bottom facesheet and web stresses
when compared with the FEM results. The difference was much
more noticeable in the top facesheet because of the local effects that
resulted from the uniform pressure load.

IV. Conclusions

A2-D plate solution for determining out-of-plane displacement of
an orthotropic thick platewas established and verifiedwith FEM for a
uniform pressure load and uniform thermal edge moments.
Additional local facesheet deformations and stress were super-
imposed with the 2-D plate results to capture the local effects of the
distributed pressure load on the facesheets. Kirchhoff hypotheses and
Euler–Bernoulli plate equationswere used for the local displacement
and stress analysis of the facesheets and webs. The symmetric and
unsymmetric plates resulted in a less than 5% prediction error in the
plate’s out-of-plane displacements when compared with the FEM.
The plate solution provided less than 5% prediction error results for
ITPS panels with L=h ratios greater than 18. An ITPS panel with a
low L=h introduced local boundary effects that contributed to the
panel’s out-of-plane displacement. A 1-D beam analysis was done on
the top facesheet to account for the local bending of the top facesheet
due to its thin thickness. The local boundary effects that introduced
local displacements and stresses were not fully captured with either
the FSDT method or the CLPT method.

Appendix A: Plate Equilibrium Equations
and Constitutive Relations

The plate equilibrium equations are
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The plate constitutive relations are( Mx

My

Mxy

)
�

D11 D12 0

D12 D22 0

0 0 D66

2
4

3
5(  x;x

 y;y
 x;y �  y;x

)
(A2)

�
Qy

Qx

�
� k C44 0

0 C55

� ��
 y �w;y
 x �w;x

�
(A3)

Appendix B: Moments in the Half-Unit Cell

In this Appendix, we provide the expressions for bending
moments in various parts of the unit cell due to unit transverse force
[see Eq. (10)]. The detailed derivations can be found in [20]:

MAB� �y� � F �y 0 � �y � f (B1)

MBC� �y� � P �y 0 � �y � p � f (B2)

MDE� �y� � �1 � F� �y � �P� R�p � Jd 0 � �y � p � f (B3)

MEG� �y� � R �y 0 � �y � f (B4)

MBE� �y� � F�f� �y cos �� � P�p � f � �y cos �� �H �y sin �

0 � �y � s
(B5)

Appendix C: Local Bending Stress in Facesheets
due to a Uniform Pressure Loading

The moments in the equations shown below are the result of the
uniform pressure loading acting on the top facesheet. The moments
were obtained from a 1-DFE analysis. Themoments weremultiplied
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Fig. 23 Bottom facesheet stress in the x and y directions of an

unsymmetric ITPS panel.

Fig. 22 Top facesheet stress in the x and y directions of an unsymmetric
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with the bending stiffness matrix of the facesheet to obtain facesheet
stress:

MC �
EI

L3
2

�2L2
2�B � 6L2vB� (C1)

MA �
EI

L3
1

�6L1vA � 2L2
1�B� (C2)

The bending moment distribution in the top facesheet consists of
two equations:

MBC
�y � �y� �MC � Po

�y2

2
0 � �y � p � f (C3)

MAB
�y � �y� � FB �y�MC � Po

�L2 � �y�2
2

0 � �y � f (C4)

Appendix D: Edge Moments

In this section, the assumed solutions to the plate deflection with
edgemoments are provided. A relationship is alsomade to reduce the
number of unknown constants from 18 to 6.

Ordinary differential equations to a 2-D plate with edge moments:
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